

Year 11 Mathematics Specialist Test 4 2022

Section 1 Calculator Free Trigonometric Functions

STUDENT'S NAME

DATE: Wednesday 3rd August

TIME: 30 minutes

MARKS: 37

INSTRUCTIONS:

Standard Items: Pens, pencils, drawing templates, eraser, approved Formula sheet

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (3 marks)

Evaluate $\cos\left(\frac{5\pi}{12}\right)\sin\left(\frac{7\pi}{12}\right)$

2. (11 marks)

(a) Solve
$$\cos\left(2x - \frac{\pi}{4}\right) = \frac{1}{2}$$
 [3]

(b) Solve $\cos(2\theta) - \cos\theta = 0$ for $0 \le x \le 2\pi$

[4]

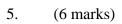
(c) Solve
$$3\csc 2\theta = -2\sqrt{3}$$
 for $-180^{\circ} \le x \le 180^{\circ}$ [4]

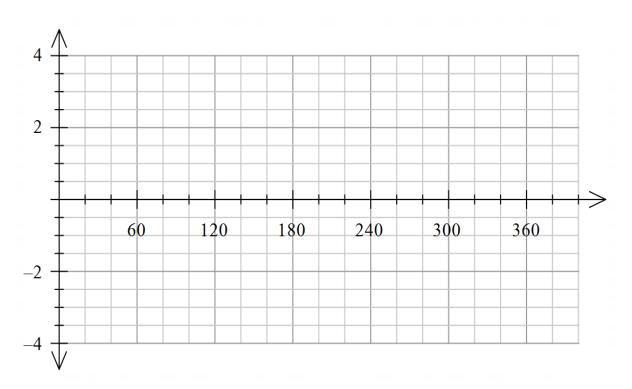
3. (6 marks)

Prove the following.

(a)
$$\frac{1}{1 + \tan^2 \theta} = \cos^2 \theta$$
 [2]

(b)
$$\cos (P+Q)\cos (P-Q) = \cos^2 P + \cos^2 Q - 1$$
 [4]


4. (8 marks)


Prove the following.

(a)
$$\cot\left(\frac{x}{2}\right) + \tan\left(\frac{x}{2}\right) = 2\csc(x)$$
 [4]

(b) $1 + 2\csc\theta \cot\theta + 2\cot^2 \theta = \frac{1 + \cos\theta}{1 - \cos\theta}$

[4]

(a) Sketch $f(x) = 2\sec(x - 30^\circ)$ on the graph below.

(b) Simplify $\frac{\sin 6B + \sin 2B}{\sin 6B - \sin 2B}$

[3]

Q____

Year 11 Mathematics Specialist Test 1 2022

Section 2 Calculator Assumed Trigonometric Functions

STUDENT'S NAME

DATE: Wednesday 3rd August

TIME: 20 minutes

MARKS: 16

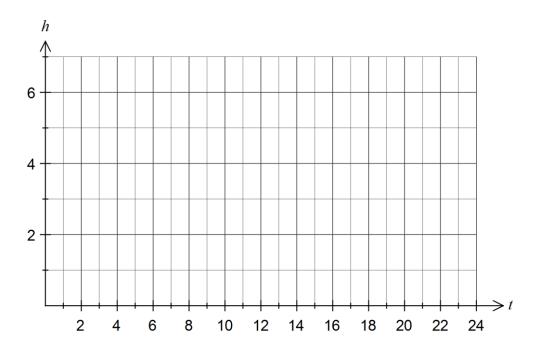
INSTRUCTIONS:

Standard Items: Special Items:

Pens, pencils, drawing templates, eraser, approved Formula sheet Three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

6. (5 marks)


Let the angle $\theta = \frac{\pi}{3} - \frac{\pi}{4} = \frac{\pi}{12}$.

- (a) Use your calculator to determine an exact value for $\sin\left(\frac{\pi}{12}\right)$. [1]
- (b) Use an angle sum or difference identity to show how to obtain the above exact value for $\sin\left(\frac{\pi}{12}\right)$. [4]

7. (5 marks)

The clearance, *h* metres, under a bridge spanning a river estuary varies with the time since midnight, *t* hours, and is given by $h = 3.6 + 2.7 \sin\left(\frac{\pi t}{6}\right)$.

(a) Sketch the graph of the clearance against time on the axes below. [3]

(b) Determine the percentage of any 24-hour period during which the clearance under the bridge is no more than two metres. [2]

8. (6 marks)

Consider the function $f(t) = 2 \sin t - 5 \cos t$, $t \ge 0$.

(a) Express f(t) in the form $r \sin(t - \alpha)$, where r > 0 and $0 \le \alpha \le \frac{\pi}{2}$ and state the values of r and α , rounded to 2 decimal places. [4]

(b) Hence or otherwise determine the minimum value of f(t) and the smallest value of t for this minimum to occur. [2]